Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Am J Med Sci ; 366(2): 102-113, 2023 08.
Article in English | MEDLINE | ID: covidwho-2308923

ABSTRACT

BACKGROUND: To evaluate the degree to which clinical comorbidities or combinations of comorbidities are associated with SARS-CoV-2 breakthrough infection. MATERIALS AND METHODS: A breakthrough infection was defined as a positive test at least 14 days after a full vaccination regimen. Logistic regression was used to calculate aORs, which were adjusted for age, sex, and race information. RESULTS: A total of 110,380 patients from the UC CORDS database were included. After adjustment, stage 5 CKD due to hypertension (aOR: 7.33; 95% CI: 4.86-10.69; p<.001; power=1) displayed higher odds of infection than any other comorbidity. Lung transplantation history (aOR: 4.79; 95% CI: 3.25-6.82; p<.001; power= 1), coronary atherosclerosis (aOR: 2.12; 95% CI: 1.77-2.52; p<.001; power=1), and vitamin D deficiency (aOR: 1.87; 95% CI: 1.69-2.06; p<.001; power=1) were significantly correlated to breakthrough infection. Patients with obesity in addition to essential hypertension (aOR: 1.74; 95% CI: 1.51-2.01; p<.001; power=1) and anemia (aOR: 1.80; 95% CI: 1.47-2.19; p<.001; power=1) were at additional risk of breakthrough infection compared to those with essential hypertension and anemia alone. CONCLUSIONS: Further measures should be taken to prevent breakthrough infection for individuals with these conditions, such as acquiring additional doses of the SARS-CoV-2 vaccine to boost immunity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Breakthrough Infections , Comorbidity , Essential Hypertension
2.
Comput Struct Biotechnol J ; 19: 3755-3764, 2021.
Article in English | MEDLINE | ID: covidwho-2268185

ABSTRACT

BACKGROUND: COVID-19 has infected over 35 million people worldwide and led to over 1 million deaths. Several risk factors that increase COVID-19 severity have emerged, including age and a history of cardiovascular disease, hypertension, or kidney disease. However, a number of outstanding questions persist, including whether the above comorbidities correlate with increased mortality from COVID-19 or whether age is a significant confounding variable that accounts for the observed relationship between COVID-19 severity and other comorbidities. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis of studies documenting COVID-19 patients with hypertension, cardiovascular disease, cerebrovascular disease, or chronic kidney disease. We classified COVID-19 cases into severe/non-severe or deceased/surviving and calculated the odds ratio (OR) for each of the four comorbidities in these cohorts. 36 studies, comprising 22,573 patients, are included in our meta-analysis. We found that hypertension is the most prevalent comorbidity in deceased COVID-19 patients (55.4%; CI: 49.4-61.3%), followed by cardiovascular disease (30.7%; CI: 22.6-38.8%), cerebrovascular disease (13.4%; CI: 9.12-19.2%), then chronic kidney disease (9.05%; CI: 5.57-15.0%). The risk of death is also significantly higher for patients with these comorbidities, with the greatest risk factor being chronic kidney disease (OR: 8.86; CI: 5.27-14.89), followed by cardiovascular disease (OR: 6.87; CI: 5.56-8.50), hypertension (OR: 4.87; CI: 4.19-5.66), and cerebrovascular disease (OR: 4.28; CI: 2.86-6.41). These risks are significantly higher than previously reported, while correlations between comorbidities and COVID-19 severity are similar to previously reported figures. Using meta-regression analysis with age as a moderating variable, we observed that age contributes to the observed risks but does not explain them fully. CONCLUSIONS: In this meta-analysis, we observed that cardiovascular, cerebrovascular, and kidney-related comorbidities in COVID-19 significantly contributes to greater risk of mortality and increased disease severity. We also demonstrated that age may not be a confounder to these associations.

3.
BMC Med Educ ; 22(1): 149, 2022 Mar 05.
Article in English | MEDLINE | ID: covidwho-1724475

ABSTRACT

BACKGROUND: The effects of drastic curricular changes necessitated by the COVID-19 pandemic on medical students' education and wellbeing have remained largely unstudied. Out study aimed to characterize how medical students were affected by the pandemic, specifically how limitations introduced by the pandemic may have affected the quality, delivery, and experience of medical education. METHODS: Three hundred students from 5 U.S. allopathic medical schools were surveyed to determine students' perceptions about their quality of medical education, professional development, and mental health during the COVID-19 pandemic (October 2020-December 2020). RESULTS: A large majority of students report that while lecture-based learning has not been significantly affected by the pandemic, small-group and clinical learning have greatly declined in quality. Students also reported higher levels of depression, anxiety, and uncertainty with regards to their futures as physicians. CONCLUSIONS: The COVID-19 pandemic has greatly affected the medical student education and wellbeing. Although medical schools have implemented measures to continue to train medical students as effectively as they can, further strategies must be devised to ensure the well-being of students in the present and for future national emergencies.


Subject(s)
COVID-19 , Students, Medical , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Pandemics , Perception , SARS-CoV-2 , Students, Medical/psychology , United States/epidemiology
4.
JAMA Netw Open ; 4(11): e2134147, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1508585

ABSTRACT

Importance: COVID-19 has disproportionately affected racial and ethnic minority groups, and race and ethnicity have been associated with disease severity. However, the association of socioeconomic determinants with racial disparities in COVID-19 outcomes remains unclear. Objective: To evaluate the association of race and ethnicity with COVID-19 outcomes and to examine the association between race, ethnicity, COVID-19 outcomes, and socioeconomic determinants. Data Sources: A systematic search of PubMed, medRxiv, bioRxiv, Embase, and the World Health Organization COVID-19 databases was performed for studies published from January 1, 2020, to January 6, 2021. Study Selection: Studies that reported data on associations between race and ethnicity and COVID-19 positivity, disease severity, and socioeconomic status were included and screened by 2 independent reviewers. Studies that did not have a satisfactory quality score were excluded. Overall, less than 1% (0.47%) of initially identified studies met selection criteria. Data Extraction and Synthesis: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Associations were assessed using adjusted and unadjusted risk ratios (RRs) and odds ratios (ORs), combined prevalence, and metaregression. Data were pooled using a random-effects model. Main Outcomes and Measures: The main measures were RRs, ORs, and combined prevalence values. Results: A total of 4 318 929 patients from 68 studies were included in this meta-analysis. Overall, 370 933 patients (8.6%) were African American, 9082 (0.2%) were American Indian or Alaska Native, 101 793 (2.4%) were Asian American, 851 392 identified as Hispanic/Latino (19.7%), 7417 (0.2%) were Pacific Islander, 1 037 996 (24.0%) were White, and 269 040 (6.2%) identified as multiracial and another race or ethnicity. In age- and sex-adjusted analyses, African American individuals (RR, 3.54; 95% CI, 1.38-9.07; P = .008) and Hispanic individuals (RR, 4.68; 95% CI, 1.28-17.20; P = .02) were the most likely to test positive for COVID-19. Asian American individuals had the highest risk of intensive care unit admission (RR, 1.93; 95% CI, 1.60-2.34, P < .001). The area deprivation index was positively correlated with mortality rates in Asian American and Hispanic individuals (P < .001). Decreased access to clinical care was positively correlated with COVID-19 positivity in Hispanic individuals (P < .001) and African American individuals (P < .001). Conclusions and Relevance: In this study, members of racial and ethnic minority groups had higher risks of COVID-19 positivity and disease severity. Furthermore, socioeconomic determinants were strongly associated with COVID-19 outcomes in racial and ethnic minority populations.


Subject(s)
COVID-19/ethnology , COVID-19/mortality , Outcome Assessment, Health Care/statistics & numerical data , Social Class , COVID-19/epidemiology , Humans , Outcome Assessment, Health Care/methods , Prevalence , Racial Groups/ethnology , Racial Groups/statistics & numerical data , United States/epidemiology , United States/ethnology
5.
Front Physiol ; 12: 649604, 2021.
Article in English | MEDLINE | ID: covidwho-1268279

ABSTRACT

Conventional smoking is known to both increase susceptibility to infection and drive inflammation within the lungs. Recently, smokers have been found to be at higher risk of developing severe forms of coronavirus disease 2019 (COVID-19). E-cigarette aerosol inhalation (vaping) has been associated with several inflammatory lung disorders, including the recent e-cigarette or vaping product use-associated lung injury (EVALI) epidemic, and recent studies have suggested that vaping alters host susceptibility to pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the impact of vaping on lung inflammatory pathways, including the angiotensin-converting enzyme 2 (ACE2) receptor known to be involved in SARS-CoV-2 infection, mice were exposed to e-cigarette aerosols for 60 min daily for 1-6 months and underwent gene expression analysis. Hierarchical clustering revealed extensive gene expression changes occurred in the lungs of both inbred C57BL/6 mice and outbred CD1 mice, with 2,933 gene expression changes in C57BL/6 mice, and 2,818 gene expression changes in CD1 mice (>abs 1.25-fold change). Particularly, large reductions in IgA and CD4 were identified, indicating impairment of host responses to pathogens via reductions in immunoglobulins and CD4 T cells. CD177, facmr, tlr9, fcgr1, and ccr2 were also reduced, consistent with diminished host defenses via decreased neutrophils and/or monocytes in the lungs. Gene set enrichment (GSE) plots demonstrated upregulation of gene expression related to cell activation specifically in neutrophils. As neutrophils are a potential driver of acute lung injury in COVID-19, increased neutrophil activation in the lungs suggests that vapers are at higher risk of developing more severe forms of COVID-19. The receptor through which SARS-CoV-2 infects host cells, ACE2, was found to have moderate upregulation in mice exposed to unflavored vape pens, and further upregulation (six-fold) with JUUL mint aerosol exposure. No changes were found in mice exposed to unflavored Mod device-generated aerosols. These findings suggest that specific vaping devices and components of e-liquids have an effect on ACE2 expression, thus potentially increasing susceptibility to SARS-CoV-2. In addition, exposure to e-cigarette aerosols both with and without nicotine led to alterations in eicosanoid lipid profiles within the BAL. These data demonstrate that chronic, daily inhalation of e-cigarette aerosols fundamentally alters the inflammatory and immune state of the lungs. Thus, e-cigarette vapers may be at higher risk of developing infections and inflammatory disorders of the lungs.

6.
Cells ; 10(6)2021 06 10.
Article in English | MEDLINE | ID: covidwho-1264420

ABSTRACT

The implications of the microbiome on Coronavirus disease 2019 (COVID-19) prognosis has not been thoroughly studied. In this study we aimed to characterize the lung and blood microbiome and their implication on COVID-19 prognosis through analysis of peripheral blood mononuclear cell (PBMC) samples, lung biopsy samples, and bronchoalveolar lavage fluid (BALF) samples. In all three tissue types, we found panels of microbes differentially abundant between COVID-19 and normal samples correlated to immune dysregulation and upregulation of inflammatory pathways, including key cytokine pathways such as interleukin (IL)-2, 3, 5-10 and 23 signaling pathways and downregulation of anti-inflammatory pathways including IL-4 signaling. In the PBMC samples, six microbes were correlated with worse COVID-19 severity, and one microbe was correlated with improved COVID-19 severity. Collectively, our findings contribute to the understanding of the human microbiome and suggest interplay between our identified microbes and key inflammatory pathways which may be leveraged in the development of immune therapies for treating COVID-19 patients.


Subject(s)
COVID-19/diagnosis , Leukocytes, Mononuclear/microbiology , Lung/microbiology , Microbiota/physiology , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/microbiology , COVID-19/virology , Case-Control Studies , Humans , Leukocytes, Mononuclear/virology , Liquid Biopsy , Lung/pathology , Lung/virology , Microbiota/genetics , Microbiota/immunology , Prognosis , RNA, Bacterial/analysis , RNA, Fungal/analysis , RNA-Seq , SARS-CoV-2/physiology
7.
Viruses ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: covidwho-1256664

ABSTRACT

Patients with underlying cardiovascular conditions are particularly vulnerable to severe COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE), or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomyopathy and healthy controls; RNA-sequencing data of whole blood samples from patients with single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregulation profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19 patients experience greater upregulation of cytokine- and inflammasome-related genes than patients with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-related gene expression profiles with that of COVID-19 patients, possibly explaining their greater vulnerability to severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Cardiomyopathies/immunology , Coronary Artery Disease/immunology , Venous Thromboembolism/immunology , COVID-19/complications , COVID-19/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Cytokines/genetics , Datasets as Topic , Humans , Immunocompromised Host/genetics , Inflammasomes/genetics , Lymphocyte Count , Patient Acuity , RNA-Seq , Venous Thromboembolism/complications
8.
medRxiv ; 20(1):2020.06.24.20138859-2020.06.24.20138859, 2020.
Article | BioMed Central | ID: covidwho-805335

ABSTRACT

The recent pandemic of Coronavirus Disease 2019 (COVID-19) has placed severe stress on healthcare systems worldwide, which is amplified by the critical shortage of COVID-19 tests. In this study, we propose to generate a more accurate diagnosis model of COVID-19 based on patient symptoms and routine test results by applying machine learning to reanalyzing COVID-19 data from 151 published studies. We aimed to investigate correlations between clinical variables, cluster COVID-19 patients into subtypes, and generate a computational classification model for discriminating between COVID -19 patients and influenza patients based on clinical variables alone. We discovered several novel associations between clinical variables, including correlations between being male and having higher levels of serum lymphocytes and neutrophils. We found that COVID-19 patients could be clustered into subtypes based on serum levels of immune cells, gender, and reported symptoms. Finally, we trained an XGBoost model to achieve a sensitivity of 92.5% and a specificity of 97.9% in discriminating COVID-19 patients from influenza patients. We demonstrated that computational methods trained on large clinical datasets could yield ever more accurate COVID-19 diagnostic models to mitigate the impact of lack of testing. We also presented previously unknown COVID-19 clinical variable correlations and clinical subgroups. ### Competing Interest Statement The authors have declared no competing interest. ### Funding Statement University of California, Office of the President/Tobacco-Related Disease Research Program Emergency COVID-19 Research Seed Funding Grant (R00RG2369) to W.M.O. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes The details of the IRB/oversight body that provided approval or exemption for the research described are given below: N/A All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable. Yes The datasets during and/or analysed during the current study available from the corresponding author on reasonable request.

9.
BMC Med Inform Decis Mak ; 20(1): 247, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-802031

ABSTRACT

BACKGROUND: The recent Coronavirus Disease 2019 (COVID-19) pandemic has placed severe stress on healthcare systems worldwide, which is amplified by the critical shortage of COVID-19 tests. METHODS: In this study, we propose to generate a more accurate diagnosis model of COVID-19 based on patient symptoms and routine test results by applying machine learning to reanalyzing COVID-19 data from 151 published studies. We aim to investigate correlations between clinical variables, cluster COVID-19 patients into subtypes, and generate a computational classification model for discriminating between COVID-19 patients and influenza patients based on clinical variables alone. RESULTS: We discovered several novel associations between clinical variables, including correlations between being male and having higher levels of serum lymphocytes and neutrophils. We found that COVID-19 patients could be clustered into subtypes based on serum levels of immune cells, gender, and reported symptoms. Finally, we trained an XGBoost model to achieve a sensitivity of 92.5% and a specificity of 97.9% in discriminating COVID-19 patients from influenza patients. CONCLUSIONS: We demonstrated that computational methods trained on large clinical datasets could yield ever more accurate COVID-19 diagnostic models to mitigate the impact of lack of testing. We also presented previously unknown COVID-19 clinical variable correlations and clinical subgroups.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Influenza, Human/diagnosis , Machine Learning , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , Computer Simulation , Coronavirus Infections/classification , Datasets as Topic , Diagnosis, Differential , Female , Humans , Influenza A virus , Male , Pandemics/classification , Pneumonia, Viral/classification , SARS-CoV-2 , Sensitivity and Specificity
10.
Int J Mol Sci ; 21(15)2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-693525

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus, overlaps with the ongoing epidemics of cigarette smoking and electronic cigarette (e-cig) vaping. However, there is scarce data relating COVID-19 risks and outcome with cigarette or e-cig use. In this study, we mined three independent RNA expression datasets from smokers and vapers to understand the potential relationship between vaping/smoking and the dysregulation of key genes and pathways related to COVID-19. We found that smoking, but not vaping, upregulates ACE2, the cellular receptor that SARS-CoV-2 requires for infection. Both smoking and use of nicotine and flavor-containing e-cigs led to upregulation of pro-inflammatory cytokines and inflammasome-related genes. Specifically, chemokines including CCL20 and CXCL8 are upregulated in smokers, and CCL5 and CCR1 are upregulated in flavor/nicotine-containing e-cig users. We also found genes implicated in inflammasomes, such as CXCL1, CXCL2, NOD2, and ASC, to be upregulated in smokers and these e-cig users. Vaping flavor and nicotine-less e-cigs, however, did not lead to significant cytokine dysregulation and inflammasome activation. Release of inflammasome products, such as IL-1B, and cytokine storms are hallmarks of COVID-19 infection, especially in severe cases. Therefore, our findings demonstrated that smoking or vaping may critically exacerbate COVID-19-related inflammation or increase susceptibility to COVID-19.


Subject(s)
Electronic Nicotine Delivery Systems , Immune System/metabolism , Peptidyl-Dipeptidase A/metabolism , Tobacco Smoking , Adult , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Bronchi/cytology , COVID-19 , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , Coronavirus Infections/pathology , Coronavirus Infections/virology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Middle Aged , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Up-Regulation , Young Adult
11.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: covidwho-327277

ABSTRACT

The COVID-19 pandemic is marked by a wide range of clinical disease courses, ranging from asymptomatic to deadly. There have been many studies seeking to explore the correlations between COVID-19 clinical outcomes and various clinical variables, including age, sex, race, underlying medical problems, and social habits. In particular, the relationship between smoking and COVID-19 outcome is controversial, with multiple conflicting reports in the current literature. In this study, we aim to analyze how smoking may affect the SARS-CoV-2 infection rate. We analyzed sequencing data from lung and oral epithelial samples obtained from The Cancer Genome Atlas (TCGA). We found that the receptor and transmembrane protease necessary for SARS-CoV-2 entry into host cells, ACE2 and TMPRSS2, respectively, were upregulated in smoking samples from both lung and oral epithelial tissue. We then explored the mechanistic hypothesis that smoking may upregulate ACE2 expression through the upregulation of the androgen pathway. ACE2 and TMPRSS2 upregulation were both correlated to androgen pathway enrichment and the specific upregulation of central pathway regulatory genes. These data provide a potential model for the increased susceptibility of smoking patients to COVID-19 and encourage further exploration into the androgen and tobacco upregulation of ACE2 to understand the potential clinical ramifications.


Subject(s)
Androgens/metabolism , Coronavirus Infections/metabolism , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/metabolism , Serine Endopeptidases/genetics , Smoking/metabolism , Up-Regulation , Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Humans , Mouth Mucosa/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Serine Endopeptidases/metabolism , Smoking/epidemiology , Smoking/genetics
SELECTION OF CITATIONS
SEARCH DETAIL